MembuatSegitiga dan Mengukur Besar Sudut dalam Segitiga . 1) Tentukan bayangan segitiga ABC dengan Mahasiswa mampu memprediksi bentuk dan koordonat bangun hasil dilatasi .
Blog Koma - Hallow teman-teman, bagaimana kabarnya? Mudah-mudahan baik-baik saja. Pada artikel ini kita akan kembali membahas artikel yang terkait dengan "Transformasi geometri" yaitu dengan jugul Transformasi Geometri Luas Bangun datar. Materi terkait Transformasi Geometri Luas Bangun datar ini perlu kita bahas karena baik di ujian tingkat sekolah seperti ulangan harian, ulangan semesteran atau ujian nasional, serta tingkat seleksi masuk perguruan tinggi juga sering dikeluarkan soal-soalnya. Untuk mempermudah dalam mempelajari materi Transformasi Geometri Luas Bangun datar ini, silahkan teman-teman kuasai terlebih dahulu transformasi secara umum dan jenis-jenis transformasi seperti translasi, dilatasi, rotasi, dan refleksi, serta komposisi transformasi. Selain itu juga teman-teman harus menguasai operasi pada matriks terutama perkalian. Transformasi geometri pada titik dan pada "persamaan kurva", kita harus mengerjakan semua jenis transformasi yang disediakan pada soal. Nah, apakah pada Transformasi Geometri Luas Bangun datar perlu kita lakukan hal yang sama yaitu mengerjakan semua jenis transformasi yang disediakan oleh soal? jawabannya tidak, karena berdasarkan sifat-sifat masing-masing jenis transformasi hanya dilatasi yang menyebabkan perubahan luas suatu bangaun datar. Artinya kita tidak perlu menghitung semua, cukup kerjakan yang dilatasi saja. Sebagai ilustrasi perhatikan gambar Transformasi Geometri Luas Bangun datar segitiga ABC berikut. Perlu diperhatikan, jika titik pada bangun datar saja yang ditransformasi, maka Transformasi Geometri Luas Bangun datar harus melibatkan semua jenis transformasi yang ada pada soal karena bukan luas bayangan yang kita cari akan tetapi bayangan dari titik-titik sudutnya sehingga ini termasuk transformasi titik bukan luas. Transformasi Geometri Luas Bangun datar Langkah-langkah dalam mengerjakan Transformasi Geometri Luas Bangun datar yaitu 1. Jika yang ditanyakan luas bayangannya, maka cukup kerjakan yang ada dilatasinya saja. Jika pada soal tidak ada dilatasinya, maka luas bayangannya sama dengan luas awalnya. 2. Jika pada soal langsung diketahui matriks transformasinya bukan translasi atau rotasi atau refleksi, maka wajib kita hitung luas bayangannya menggunakan matriks tersebut digabungkan dengan dilatasi jika ada. 3. Jika yang ditanyakan bayangan dari titik-titik sudutnya, maka semua jenis transformasi yang ada pada soal kita kerjakan. $\spadesuit $ Cara menghitung luas bayangan Luas bayangan = $MT \times $ Luas awal. dimana $ MT = \, $ determinan matriksnya. Cara Menghitung Luas Segitiga $\spadesuit $ Luas Segitiga ABC Misalkan segitiga ABC dengan koordinatnya $Aa_1,a_2 , Bb_1,b_2 $ dan $ Cc_1,c_2$, Luasnya Luas $ = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right $ Luas $ = \frac{1}{2} [a_1b_2+b_1c_2+c_1a_2-b_1a_2+c_1b_2+a_1c_2] $ Catatan Bentuk penghitungan luas seperti di atas mirip determinan pada matriks dengan mengulang titik yang paling kiri diletakkan kembali di paling kanan. Untuk lebih mendalam tentang cara menghitung luas bangun datar yang diketahui koordinatnya, silahkan baca artikel "Luas Bangun Datar Diketahui Koordinatnya". Contoh Soal Transformasi Geometri Luas Bangun datar 1. Segitiga ABC dengan koordinat titik-titik sudutnya yaitu $A-1,2 , B2,3 $ dan $ C1,5 $ ditransformasi oleh matriks $ \left \begin{matrix} 3 & -1 \\ 2 & 4 \end{matrix} \right $. Tentukan a. bayangan titik-titik sudut segitiga ABC, b. luas bayangan segitiga ABC. Penyelesaian a. Menentukan bayangan titik-titik sudutnya $ \begin{align} \left \begin{matrix} A^\prime & B^\prime & C^\prime \end{matrix} \right & = MT. \left \begin{matrix} A & B & C \end{matrix} \right \\ & = \left \begin{matrix} 3 & -1 \\ 2 & 4 \end{matrix} \right. \left \begin{matrix} -1 & 2 & 1 \\ 2 & 3 & 5 \end{matrix} \right \\ & = \left \begin{matrix} -5 & 3 & -2 \\ 6 & 16 & 22 \end{matrix} \right \end{align} $ Jadi bayangan titik sudutnya adalah $ A^\prime -5,6, \, B^\prime 3,16, $ dan $ -2, 22 $. b. Menentukan luas bayangan segitga ABC dengan bayangan titik-titik sudutnya sudah kita peroleh di bagian a di atas. Luas bayangannya $\begin{align} \text{Luas bayangan } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} -5 & 3 & -2 & -5 \\ 6 & 16 & 22 & 6 \end{matrix} \right \\ & = \frac{1}{2} [ \\ & = \frac{1}{2} [-80+66-12-18-32-110] \\ & = \frac{1}{2} [-26-124] \\ & = \frac{1}{2} [98] = 49 \end{align} $ Jadi, luas bayangannya adalah 49 satuan luas$. \, \heartsuit $ Cara 2 bagian b, *. Luas awal segitiga ABC $\begin{align} \text{Luas awal } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} -1 & 2 & 1 & -1 \\ 2 & 3 & 5 & 2 \end{matrix} \right \\ & = \frac{1}{2} [-3 + 10 +2-4 + 3 -5] \\ & = \frac{1}{2} [7] = \frac{7}{2} \end{align} $ *. Luas bayangannya $\begin{align} \text{Luas bayangan } & = MT \times \text{Luas awal} \\ & = \left \begin{matrix} 3 & -1 \\ 2 & 4 \end{matrix} \right \times \frac{7}{2} \\ & = \times \frac{7}{2} \\ & = 14 \times \frac{7}{2} = 49 \end{align} $ 2. Segitiga ABC dengan koordinat $A1,2, B3,-1, $ dan $ C4,1 $ ditranslasi $ \left \begin{matrix} 5 \\ -1 \end{matrix} \right $, kemudian dilanjutkan lagi dengan pencerminan terhadap sumbu X, setelah itu didilatasi dengan faktor skala 2 dan titik pusat $-1,3$, setelah itu dilanjutkan lagi dengan rotasi sejauh $ 90^\circ $ belawanan jarum jam dengan titik pusat $2,1 $. Tentukan luas bayangan segitiga ABC! Penyelesaian Cara I Menentukan bayangan titik segitiganya *. Pertama Translasi , $ \left \begin{matrix} A^\prime \end{matrix} \right = \left \begin{matrix} 1 \\ 2 \end{matrix} \right + \left \begin{matrix} 5 \\ -1 \end{matrix} \right = \left \begin{matrix} 6 \\ 1 \end{matrix} \right $ $ \left \begin{matrix} B^\prime \end{matrix} \right = \left \begin{matrix} 3 \\ -1 \end{matrix} \right + \left \begin{matrix} 5 \\ -1 \end{matrix} \right = \left \begin{matrix} 8 \\ -2 \end{matrix} \right $ $ \left \begin{matrix} C^\prime \end{matrix} \right = \left \begin{matrix} 4 \\ 1 \end{matrix} \right + \left \begin{matrix} 5 \\ -1 \end{matrix} \right = \left \begin{matrix} 9 \\ 0 \end{matrix} \right $ *. Kedua Pencerminan sumbu X, MT $ = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right $ $ \left \begin{matrix} A^{\prime \prime } \end{matrix} \right = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right. \left \begin{matrix} 6 \\ 1 \end{matrix} \right = \left \begin{matrix} 6 \\ -1 \end{matrix} \right $ $ \left \begin{matrix} B^{\prime \prime } \end{matrix} \right = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right. \left \begin{matrix} 8 \\ -2 \end{matrix} \right = \left \begin{matrix} 8 \\ 2 \end{matrix} \right $ $ \left \begin{matrix} C^{\prime \prime } \end{matrix} \right = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right. \left \begin{matrix} 9 \\ 0 \end{matrix} \right = \left \begin{matrix} 9 \\ 0 \end{matrix} \right $ *. Ketiga dilatasi, MT $ = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right $ dengan $a,b=-1,3$ $ \begin{align} \left \begin{matrix} A^{\prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 6 - -1 \\ -1 - 3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 7 \\ -4 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 14 \\ -8 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right = \left \begin{matrix} 13 \\ -5 \end{matrix} \right \\ \left \begin{matrix} B^{\prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 8 - -1 \\ 2 - 3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 9 \\ -1 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 18 \\ -2 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right = \left \begin{matrix} 17 \\ 1 \end{matrix} \right \\ \left \begin{matrix} C^{\prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 9 - -1 \\ 0 - 3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 10 \\ -3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 20 \\ -6 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right = \left \begin{matrix} 19 \\ -3 \end{matrix} \right \end{align} $ *. Keempat rotasi, MT $ = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right $ dengan $a,b=2,1$ $ \begin{align} \left \begin{matrix} A^{\prime \prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 13 - 2 \\ -5 - 1 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 11 \\ -6 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 6 \\ 11 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right = \left \begin{matrix} 8 \\ 12 \end{matrix} \right \\ \left \begin{matrix} B^{\prime \prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 17 - 2 \\ 1 - 1 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 15 \\ 0 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 \\ 15 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right = \left \begin{matrix} 2 \\ 16 \end{matrix} \right \\ \left \begin{matrix} C^{\prime \prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 19 - 2 \\ -3 - 1 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 17 \\ -4 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 4 \\ 17 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right = \left \begin{matrix} 6 \\ 18 \end{matrix} \right \end{align} $ *. Koordinat bayangan titik-titik sudut segitiga adalah $A^{\prime \prime \prime \prime}8,12, B^{\prime \prime \prime \prime}2,16 $ dan $ C^{\prime \prime \prime \prime}6, 18 $. *. Menentukan luas bayangannya $\begin{align} \text{Luas bayangan } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} 8 & 2 & 6 & 8 \\ 12 & 16 & 18 & 12 \end{matrix} \right \\ & = \frac{1}{2} [128 + 36 + 72-24 + 96 + 144] \\ & = \frac{1}{2} [-28] = -14 = 14 \end{align} $ Luasan selalu bernilai positif. Jadi, luas bayangannya adalah 14 satuan luas$. \, \heartsuit $ Cara 2 Hanya memperhatikan bentuk dilatasi saja. *. Pada dilatasi, berapapun titik pusatnya tidak berpengaruh pada luas, artinya luas hanya ditentukan oleh faktor skala saja. *. Luas awal segitiga ABC $\begin{align} \text{Luas awal } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} 1 & 3 & 4 & 1 \\ 2 & -1 & 1 & 2 \end{matrix} \right \\ & = \frac{1}{2} [-1 + 3 + 8-6 - 4 + 1] \\ & = \frac{1}{2} [7] = \frac{7}{2} \end{align} $ *. Luas bayangannya dilatasi dengan $ k = 2 $ $\begin{align} \text{Luas bayangan } & = MT \times \text{Luas awal} \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right \times \frac{7}{2} \\ & = \times \frac{7}{2} \\ & = 4 \times \frac{7}{2} = 14 \end{align} $ Jadi, luas bayangannya adalah 14 satuan luas, sama dengan cara I. 3. Lingkaran dengan persamaan $x-1^2 + y + 3^2 = 5 $ dirotasi sejauh $ 135^\circ $ searah jarum jam, kemudian dilanjutkan dengan pencerminan terhadap garis $ y = x + 6 $, setelah itu dilanjutkan dengan translasi sejauh $ \left \begin{matrix} 12 \\ -10 \end{matrix} \right $ . Tentukan luas bayangan lingkaran tersebut! Penyelesaian *. Luas akan berubah jika dilakukan dilatasi pada lingkaran tersebut. *. Karena tidak ada dilatasi, maka luas bayangan tetap yaitu sama dengan luas awal. *. Lingkaran $ x-1^2 + y + 3^2 = 5 $ memiliki $ r = \sqrt{5} $. *. Luas bayangannya $\begin{align} \text{Luas bayangan } & = \text{Luas awal} \\ & = \pi r^2 \\ & = \pi \sqrt{5}^2 = 5\pi \end{align} $ Jadi, luas bayangannya adalah $ 5\pi $ satuan luas $. \, \heartsuit $ 4. Sebuah segiempat ABCD memiliki koordinat A1,2, B2,5, C3, 7 dan D5,4 dilakukan transformasi yaitu pertama didilatasi dengan faktor skala 3 dan titik pusat $-1,2$, dilanjutkan dengan rotasi sejauh $ 180^\circ $ dengan pusat $0,0$, dilanjutkan kembali translasi sejauh $ \left \begin{matrix} -3 \\ 1 \end{matrix} \right $. Tentukan perbandingan luas bayangan dan luas awalnya! Penyelesaian *. Pada soal ini, yang berpengaruh hanya dilatasi dengan $ k = 3 $, sehingga $\begin{align} \text{Luas bayangan } & = MT \times \text{Luas awal} \\ \frac{\text{Luas bayangan } }{\text{Luas awal } } & = MT \\ & = \left \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix} \right \\ & = - \\ & = 9 = \frac{9}{1} \end{align} $ Jadi, perbandingan luas bayangan dan luas awalnya adalah $ 9 1 . \, \heartsuit $. Demikian pembahasan materi Transformasi Geometri Luas Bangun datar dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan transformasi geometri.
V menerapkannya untuk menentukan titik stasioner (titik maximum, titik minimumdan titik belok). 11 Menganalisis bentuk model XI/2 Aplikasi turunan fungsi v Diberikan kotak tanpa tutup dengan alas berbentuk 21 matematika berupa persamaan persegi, Siswa dapat menentukan luas maksimum fungsi, serta menerapkan konsep permukaan kotak jika Disajikan
Hai Quipperian, bagaimana kabarnya? Semoga selalu sehat, ya. Pernahkah kamu memanfaatkan tools zoom/perbesaran saat sedang memfoto suatu objek? Jika kamu memperbesar suatu objek melalui kamera, pasti akan muncul keterangan 1,5x; 2x; 3,5x; 3,9x; dan seterusnya kan? Di dalam Matematika, keterangan 2x atau 4x itu merupakan faktor pengali sementara proses perbesaran yang kamu lakukan disebut dilatasi. Lalu, apa yang dimaksud dilatasi itu? Daripada penasaran, yuk simak selengkapnya! Pengertian Dilatasi Dilatasi adalah perubahan titik suatu objek pada bidang geometri berdasarkan nilai faktor pengalinya. Pada transformasi jenis ini, ukuran bayangan bisa berbeda dengan ukuran bendanya. Namun, bisa juga ukuran bayangannya tetap. Namun, bentuknya tetap sama, ya. Mengapa demikian? Hal itu karena adanya faktor pengali. Misalnya suatu objek diperbesar dengan faktor pengali = 2, maka bayangan objek tersebut memiliki ukuran dua kali ukuran objek mula-mula dan jarak bayangan terhadap titik pusatnya juga dua kali lebih jauh dari jarak objek dan titik pusat mula-mula. Faktor Pengali Pada Dilatasi Faktor pengali merupakan faktor penentu letak dan ukuran suatu objek hasil dilatasi. Lalu, seperti apa hubungan antara dilatasi dan faktor pengali? Faktor pengali lebih besar dari satu k > 1 akan mengakibatkan pembesaran ukuran objek dan searah dengan sudut dilatasi objek awalnya. Faktor pengali sama dengan satu k = 1 tidak mengakibatkan perubahan ukuran atau posisi objek. Faktor pengali antara 0 dan 1 0 < k < 1 mengakibatkan pengecilan ukuran objek dan searah dengan sudut dilatasi awalnya. Faktor pengali antara -1 dan 0 -1 < k < 0 mengakibatkan pengecilan ukuran objek dan memiliki arah yang berlawanan dengan sudut dilatasi awalnya. Faktor pengali sama dengan -1 k = -1 tidak mengakibatkan perubahan ukuran objek, namun arahnya berlawanan dengan sudut dilatasi awalnya. Faktor pengali lebih kecil dari -1 k < – 1 mengakibatkan pembesaran ukuran objek dan memiliki arah berlawanan dengan sudut dilatasi awalnya. Jenis-Jenis Dilatasi Berdasarkan titik pusatnya, dilatasi dibagi menjadi dua, yaitu dilatasi terhadap titik pusat 0, 0 dan dilatasi terhadap titik pusat a, b. Apa perbedaan antara keduanya? Dilatasi Terhadap Titik Pusat 0, 0 Bentuk umum dilatasi titik A terhadap titik pusat 0, 0 bisa dinyatakan sebagai berikut. Bentuk penulisan di atas menunjukkan bahwa titik A yang berkoordinat x, y mengalami dilatasi terhadap titik pusat 0, 0 dengan faktor pengali k, sehingga menghasilkan titik A’ yang berkoordinat x’, y’. Nah, koordinat x’, y’, kamu bisa tentukan menggunakan persamaan matriks seperti di bawah ini. Agar semakin paham, simak contoh soalnya ya. Suatu objek berbentuk persegipanjang PQRS berada di bidang koordinat Cartesius seperti berikut. Jika objek tersebut didilatasikan terhadap titik pusat dengan k = 2, tentukan bentuk bayangan yang terjadi! Pembahasan Mula-mula, tentukan dahulu koordinat titik P, titik Q, titik R, dan titik S seperti pada tabel. TitikKoordinatP1, 3Q4, 3R1, 2S4, 2 Selanjutnya, tentukan koordinat titik P’, titik Q’, titik R’, dan titik S’ dengan persamaan dilatasi terhadap titik pusat. Titik P’ Dengan demikian P’ = 2, 6 Titik Q’ Dengan demikian Q’ = 8, 6 Titik R’ Dengan demikian R’ = 2, 4 Titik S’ Dengan demikian S’ = 8, 4 Diperoleh Titik awalKoordinatTitik akhirKoordinatP1, 3P’2, 6Q4, 3Q’8, 6R1, 2R’2, 4S4, 2S’8, 4 Jika digambarkan dalam koordinat Cartesius menjadi Terlihat kan jika gambar objeknya mengalami pembesaran dengan arah yang sama dengan sudut dilatasi awalnya? Sampai sini, apakah Quipperian sudah paham? Jika sudah, yuk lanjut ke pembahasan selanjutnya. Dilatasi Terhadap Titik Pusat a, b Jika titik A mengalami dilatasi terhadap titik pusat a, b dengan faktor pengali k, maka secara matematis bisa dinyatakan sebagai Lalu, bagaimana cara menentukan koordinat akhir dilatasinya? Koordinat akhir bisa dicari dengan persamaan matriks berikut. Agar kamu semakin paham, yuk simak contoh soalnya. Suatu segitiga ABC memiliki titik koordinat sebagai berikut. Titik A = 4, 6 Titik B = 2, 2 Titik C = 6, 2 Jika segitiga tersebut didilatasi terhadap titik pusat 2, -2 dengan faktor pengali = -1/2, tentukan gambar objek beserta hasil dilatasinya! Pembahasan Sebelum mengeplot titik A, B, dan C pada koordinat Cartesius, sebaiknya tentukan dulu koordinat hasil dilatasinya, ya. Koordinat titik A’ Diketahui titik A 4, 6, k = -1/2 Dengan demikian, A’ = 1, -6. Koordinat titik B’ Diketahui titik B 2, 2, k = -1/2 Dengan demikian, B’ = 2, -4. Koordinat titik C’ Diketahui titik C 6, 2, k = -1/2 Dengan demikian, C’ = 0, -4. Jika titik-titik tersebut disubstitusikan ke dalam koordinat Cartesius, akan diperoleh gambar seperti berikut. Oleh karena faktor dilatasinya k = -1/2, maka bayangan objeknya diperkecil dengan arah sudut dilatasi berlawanan terhadap sudut dilatasi semula. Contoh Soal Untuk mengasah pemahamanmu, yuk simak contoh soal seperti di bawah ini. Contoh Soal 1 Suatu titik Q 6,3 mengalami dilatasi terhadap pusat 3, -5. Jika faktor pengalinya -1, tentukan koordinat akhir titik Q. Pembahasan Untuk mencari koordinat akhir titik Q, gunakan persamaan berikut ini. Jadi, koordinat akhir titik Q atau titik Q’ -2, -6. Contoh Soal 2 Suatu bangun persegi PQRS memiliki koordinat masing-masing seperti berikut. Titik P2,-2 Titik Q4,-2 Titik R2, -4 Titik S4,-4 Bangun tersebut ditranslasikan terhadap titik pusat 0,0 dengan faktor pengali 3/2. Gambarkan dilatasi bangun persegi PQRS tersebut! Pembahasan Pertama, kamu harus menentukan koordinat akhir masing-masing titik. Titik P’ Dengan demikian, koordinat titik P’ = 3,-3. Titik Q’ Dengan demikian, koordinat titik Q’ = 6,-3. Titik R’ Dengan demikian, koordinat titik R’ = 3,-6. Titik S’ Dengan demikian, koordinat titik R’ = 6, -6. Jika kedua bangun digambarkan dalam koordinat Cartesius, diperoleh gambar seperti berikut. Contoh Soal 3 Titik A yang berkoordinat 3, 9 mengalami dilatasi terhadap titik pusat a, b dengan faktor pengali 2, sehingga diperoleh koordinat akhir A’ 5, 16. Tentukan koordinat titik pusat dilatasinya! Pembahasan Diketahui x = 3 y = 9 k = 2 x’ = 5 y’ = 16 Ditanya a, b =…? Jawab Untuk menentukan titik pusat dilatasinya, gunakan persamaan dilatasi terhadap titik pusat a, b seperti berikut. Dari persamaan di atas, diperoleh 5 = 6 – 2a + a ⇔ a = 1 16 = 18 – 2b + b ⇔ b = 2 Dengan demikian, diperoleh a = 1 dan b = 2. Jadi, koordinat titik pusat a, b adalah 1, 2. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
. 360 48 10 342 222 250 421 307