Luasbayangan segitiga ABC dengan A(2,1),B(6,1),C(4,4) oleh dilatasi terhadap 0 dengan faktor skala 3 adalah - 13689019 Dilatasi (0,3) Maka: L.Bayangannya= 3².6=9.6= 54 satuan luas Jadikan Jawaban Terbaik Ya Semoga Membantu pengen tau kak, cara mencari tinggi sama alas nya sama tingginya gimana ya? masih nggak paham ToT Iklan Iklan Hi, Sobat Zenius, kali ini gue akan membahas materi transformasi geometri nih atau lebih tepatnya rumus dilatasi matematika dan contoh soal beserta pembahasannya. Sebelumnya kita pernah bahas translasi, refleksi, dan rotasi, sekarang gue akan bahas materi terakhir dari transformasi geometri, yaitu dilatasi. Mungkin istilah dilatasi terdengar asing, ya? Istilah dilatasi dapat memiliki makna pengembangan, pemuaian, pembesaran, atau perkalian. Dilatasi Pembesaran Arsip Zenius Dalam materi kali ini, makna pembesaran dan perkalian adalah yang mendekati pembahasan kita, nih. Selanjutnya, jika gue lagi gak pake istilah dilatasi, gue akan menggunakan kata pembesaran atau perkalian, ya, Jangan banyak ba-bi-bu lagi, langsung saja kita bahas, guys. Konsep dan Pengertian Dilatasi Rumus DilatasiRumus Dilatasi dengan Faktor Skala K dan Pusat A, BContoh Soal dan Pembahasan Konsep dan Pengertian Dilatasi Eits, sabar dong jangan langsung ke rumus dilatasi ya. Kalian perlu tahu dulu, apa itu transformasi geometri. Begini singkatnya, Transformasi adalah perubahan dan geometri adalah ilmu ukur atau cabang ilmu matematika yang membahas tentang garis, sudut, bidang, dan ruang. Jadi, dapat disimpulkan transformasi geometri ini membahas proses penentuan titik-titik baru dari suatu bangun. Untuk dilatasi sendiri, sedikitnya sudah kita bahas di awal artikel ini, guys. Dilatasi itu dapat berarti transformasi yang mengubah suatu ukuran memperbesar/memperkecil suatu bangun geometri tanpa merubah bentuk bangunnya. Jadi tergantung dilatasinya ya, bisa membesar 2 kali lipat, atau 3 kali lipat dan seterusnya. Sebelum lanjut, udah punya aplikasi Zenius belum? Belajar lewat aplikasinya juga nggak kalah asyik, lho. Download aplikasi Zenius untuk belajar yang lebih seru ya dengan klik gambar di bawah ini. Download Aplikasi Zenius Fokus UTBK untuk kejar kampus impian? Persiapin diri elo lewat pembahasan video materi, ribuan contoh soal, dan kumpulan try out di Zenius! Perlu elo ketahui dulu nih dalam rumus dilatasi matematika adalah elemen-elemen yang ada di dalamnya. Pada contoh soal dilatasi biasanya diketahui titik pusatnya, kemudian titik x,y dan dilatasinya yang dilambangkan dengan nilai K. Rumus dilatasi cukup mudah karena hanya mengalikan angka pada x dan y dengan nilai K. x, y → xˡ, yˡ = Kx, Ky Misalnya begini, elo punya sebuah segitiga dengan titik A berada di 2, 4, titik B berada di 2, 2, dan titik C berada di 4, 2. Segitiga tersebut akan mengalami pembesaran atau dilatasi sebesar dua kali lipatnya K = 2. Di mana letak titik-titiknya jika segitiga itu mengalami dilatasi dua kali lipat? Rumus dan cara menjawabnya adalah sebagai berikut, Sobat Zenius. A 2, 4 → Aˡ 4, 8 B 2, 2 → Bˡ 4, 4 C 4, 2 → Cˡ 8, 4 Semua angka baik x maupun y akan dikalikan dengan K = 2. Berikut adalah visualisasi dari contoh tersebut. Dilatasi Cukup mudah kan? Dengan gambar di atas semoga elo dapat langsung mengerti dengan apa yang telah gue sampaikan. Lalu, bagaimana jika titik pusatnya tidak berada pada titik 0 atau 0, 0? Bagaimana jika titik pusatnya berada di A, B? Simak terus untuk menemukan jawabannya, ya. Untuk pembahasan yang lebih jelas, nanti gue juga akan sediakan contoh soal dilatasi. Rumus Dilatasi dengan Faktor Skala K dan Pusat A, B Nah, kita akan menjawab pertanyaan-pertanyaan sebelumnya. Jika jika titik pusatnya tidak berada pada titik 0, 0 atau titik pusatnya berada di A, B, rumus dilatasi akan ditemukan dengan cara berikut, guys. Perhatikan gambarnya dulu, ya! Rumus Dilatasi dengan Faktor Skala K dan Pusat A, B Kx – a = xˡ – a xˡ = Kx – a + a Ky – b = yˡ – b yˡ = Ky – b + b x, y → xˡ, yˡ = Kx – a + a, Ky – b + b Jadi, rumus faktor skala dilatasi dengan skala K dan pusat A, B adalah seperti yang tercantum di atas. Sebuah transformasi dilatasi dengan faktor dilatasi kayak lebih susah dipahami ya? Bagaimana jika sekarang kita coba pakai pada contoh soal dilatasi? Bagian ini kan yang paling elo tunggu-tunggu. Oke deh gak pake lama langsung saja kita sikat contoh soalnya. Contoh Soal dan Pembahasan Titik A 1, 2 akan dilatasi sebesar tiga kali dengan pusat -5, 1, tentukan letak titik Aˡ! Jawab x, y → xˡ, yˡ = Kx – a + a, Ky – b + b 1, 2 → xˡ, yˡ = 31 – -5 + -5, 32 – 1 + 1 1, 2 → xˡ, yˡ = 13, 4 Usai sudah pembahasan materi dilatasi matematika kita pada artikel ini, guys. Gimana nih tentang contoh soal dan pembahasan transformasi geometri dilatasi tadi, apakah masih ada yang bikin bingung? Semoga elo paham dengan materi ini dan materi transformasi geometri lainnya, ya. Jangan lupa untuk terus berlatih soal ya. Kalau elo ingin penjelasannya secara visual bisa cek video pembahasannya oleh tutor Zenius. Oh iya, elo juga bisa cek pembahasan materi lain dengan cara klik banner di bawah ini dan tinggal ketik materi apa yang mau elo pelajari. Klik banner dan ketik materi yang diinginkan di kolom pencarian! Kalo mau dapetin materi belajar yang lebih lengkap dan akses ke ribuan latihan soal hingga live class, elo bisa langganan paket belajar Zenius Aktiva Sekolah. Pembahasan yang lengkap dan bimbingan dari para tutor berpengalaman bisa bantu elo untuk ningkatin nilai rapor. Yuk, cek info selengkapnya dengan klik gambar di bawah ini. Selamat belajar, Sobat Zenius! Baca Juga Artikel Lainnya Rumus Refleksi Rumus Rotasi Rumus Translasi Originally published September 27, 2021 Updated by Silvia Dwi & Arieni Mayesha luas segitiga dengan aplikasi Dev C++ : #include using namespace std; int main(){ int alas,tinggi,lu MatematikaGEOMETRI Kelas 11 SMATransformasiDilatasi PerkalianLuas bayangan segitiga ABC dengan A-3, 0, B4, 0 , dan C4, 4 oleh dilatasi [O, 2] dilanjutkan transformasi yang bersesuaian dengan matriks 5 3 -2 -1 adalahDilatasi PerkalianTransformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0232Tentukan bayangan dari persegi ABCD dengan titik sudut A...0242Bayangan titik P5, 4 jika didilatasi terhadap pusat -2...0252Hasil dilatasi terhadap titik B-1, 3 dengan pusat O0, ...0309Diketahui titik P6,-8 dan Aa,b. Bayangan titik P oleh...Teks videoHalo kok Friends pada soal kali ini ditanyakan luas bayangan segitiga ABC oleh dilatasi 0,2 yang dilanjutkan transformasi yang bersesuaian dengan matriks berikut sehingga untuk menyelesaikan soal ini perlu kita ingat dilatasi dengan pusat O 0,0 dan faktor dilatasi jika x aksen aksen = 00 x x x y sehingga di sini bayangan segitiga ABC oleh dilatasi 0,2 Nah kita subtitusi tanya sama dengan Kemudian pada X Y yang pertama untuk titik A min 3,0 kemudian titik B 40 kemudian titik c 4,4. Nah dilakukan perhitungan ndak ingat perkalian matriks baris dikali dengan kolom baris pertama pada matriks pertama kita kalikan dengan kolom pertama pada matriksMasih menjadi sini diperoleh 6880080 selanjutnya. Perhatikan di sini dilanjutkan oleh transformasi matriks A 5 Min 23 min 1 sehingga X aksen y aksen = abcd dikali x y Nah kita gunakan bentuk ini sehingga matriksnya 5 32 min 1 dikali dengan hasil dilatasi tadi min 6 8 8 0 0 8 dilakukan perkalian matriks diperoleh Min 30 40 64 12 MIN 16 Min 24 sehingga kita peroleh luas bayangan segitiga ABC kita gunakan rumus nya yaitu a aksen = seperdua kali determinan 111 x 1 y 1 x 2 Y 2 X 3 y 3 sehingga di sini aksen =dua kali determinan 111 Min 32 + 40 MIN 16 + 4 Min 24 sehingga perhatikan ini matriknya untuk mendapatkan determinannya kita lakukan metode sarrus sehingga kita tambahkan dua kolom pertama caranya kita kalikan diagonalnya pertama kita mulai dari atas yaitu 1 dikali 40 dikali min 20 = min 960 kemudian ditambah 1 dikali 64 dikali 12 = 768 kemudian ditambah 1 x min 30 kali MIN 16 sama dengan 480 kemudian diagonal dari bawah artinya dikurangkan selanjutnya dikurangkan yaitu dikurang MIN 12 dikali 40 = Min 480 kemudian berikutnya dikurang1024 dikurangi 720 diperoleh = 112 sehingga disini luas bayangannya seperdua kali Nah disini 112 kita hilangkan tanda mutlak Nya sehingga l aksen = seperdua X 112 = 56 satuan bisa kita lihat jawab yang sesuai ada pada opsi pilihan B sampai jumpa pada pembahasan soal berikutnya Dilatasiadalah sebuah transformasi geometri yang mengubah ukuran benda namun bentuk benda tetap. Beberapa contoh dari dilatasi yaitu : sebuah miniatur mobil dimana ukurannya lebih kecil dari ukuran mobil sebenarnya, sebuah pencetakan foto yang diperbesar dari klisenya (layar kamera), dan lain-lainnya. Proses perubahan ukuran benda dari kecil
Menghitung Luas bayangan Bangun Datar –Lega topik sebelumnya, kalian telah belajar tentang transmutasi titik, garis, dan kurva. Kalian tentu mengetahui bahwa dari bilang titik dan bilang garis dapat dibuat bidang menjemukan. Nah, kali ini kalian akan belajar akan halnya prinsip menentukan luas gambaran bersumber bangun membosankan setelah ditransformasi. Sebagaimana kalian ketahui, suatu bangun datar jika ditransformasi akan mengalami perubahan. Adapun perubahan tersebut dapat substansial posisi maupun letak, dapat pun bentuk bangunnya, atau juga ukurannya. Sebelum membahas lebih lanjur adapun luas bayangan ingat ira, mari kita ingat kembali cara menghitung luas segitiga sama kaki jika diketahui koordinat ketiga tutul sudutnya. Luas segitiga sama Fonem dengan koordinat titik-titik sudut Ax1, y1, Bx2, y2, dan Cx3, y3 dapat ditentukan dengan menunggangi rumus berikut Cukuplah, bakal mempermudah pemahaman kalian akan halnya bagaimana menentukan luas gambaran bangun datar, ayo kita perhatikan model berikut. Tentukan luas gambaran persegi panjang ABCD dengan koordinat A2, 0, B6,0, C6, 2, dan D2,2 jika ditransformasikan terhadap matriks berikut 2 0 0 2 2002 1 − 1 1 2 11−12 1 1 0 2 1012 Penuntasan 1 Bersendikan konsep konversi, diperoleh hasil alterasi sebagai berikut 2 0 0 2 2 0 6 0 6 2 2 2 2002 26620022 = 4 0 12 0 12 4 4 4 =4121240044 Bersendikan uraian di atas, dapat kita simpulkan bahwa bayangan titik A, B, C, dan D berderet-deret yakni A’4, 0, B’12, 0, C’12, 4, dan D’4, 4. Berdasarkan bagan di atas, tampak bahwa bentuk gambaran hasil transformasi masih berupa persegi strata. Luas A’B’C’D’ = A’B’ x A’D’= 8 x 4 =32 satuan luas. 2 Berdasarkan konsep transformasi, diperoleh hasil transformasi umpama berikut 1 − 1 1 2 2 0 6 0 6 2 2 2 11−12 26620022 = 2 − 2 6 − 6 8 − 2 4 2 =2684−2−6−22 Berdasarkan uraian di atas, dapat kita simpulkan bahwa cerminan bintik A, B, C, dan D berjejer-jejer adalah A’2, -2, B’6, -6, C’8, -2, dan D’4, 2. Berdasarkan kerangka di atas, tampak bahwa kerangka bayangan hasil transmutasi riiljajar genjang. Kerjakan menentukan luas segiempat A’B’C’D’, perhatikan persegi panjang PQRD dengan PQ = 6 cm dan QR = 8 cm. Luas A’B’C’D’= Luas PQRD – Luas ΔPB’A’ – Luas ΔB’QC’ – Luas ΔC’RD’ – Luas ΔA’D’D= 6 x 8 – ½ x PB’ x PA’ – ½ x B’Q x QC’ – ½ x C’R x RD’ – ½ x A’D x DD’= 48 – ½ x 4 x 4 – ½ x 2 x 4 – ½ x 4 x 4 – ½ x 4 x 2= 48 – 8 – 4 – 8 – 4 =24 satuan luas 3 Berdasarkan konsep transmutasi, diperoleh hasil transformasi misal berikut 1 1 0 2 2 0 6 0 6 2 2 2 1012 26620022 = 2 2 6 6 6 10 2 6 =266226106 Beralaskan uraian di atas, dapat kita simpulkan bahwa cerminan bintik A, B, C, dan D berturut-turut yakni A’2, 2, B’6, 6, C’6, 10, dan D’2, 6. Berdasarkan gambar di atas, tertentang bahwa bentuk bayangan hasil metamorfosis berupa deret genjang. L A ′ B ′ C ′ D ′ LA′B′C′D′ = A ′ B ′ × A ′ D ′ =A′B′×A′D′ = D C 2 + B ′ C 2 − − − − − − − − − − √ =DC2+B′C2 = 4 2 + 4 2 − − − − − − √ × 4 =42+42×4 = 4 2 – √ × 4 =42×4 = 16 2 – √ satuan luas =162 satuan luas Apa nan dapat kalian simpulkan berasal hasil nan diperoleh pada contoh 1? Silakan kita perhatikan tabel berikut. Berdasarkan tabel di atas, terbantah bahwa luas bangun paparan begitu juga determinan matriks transformasi dikalikan dengan luas bangun tadinya. Secara umum, jika suatu ingat datar dengan luas L ditransformasikan oleh suatu konversi yang bersesuaian dengan matriks a c b d abcd , maka luas bangun bayangannya merupakan L ′ = ∣ ∣ ∣ a c b d ∣ ∣ ∣ × L L′=abcd ×L . Agar kalian kian jelas, mari kita perhatikan sejumlah contoh berikut. Diketahui segitiga OAB dengan koordinat titik sudutnya adalah Udara murni0, 0, A4, 0, dan B2, 3. Jika segitiga sama kaki OA’B’ adalah bayangan dari segitiga OAB oleh transformasi yang bersesuaian dengan matriks 0 1 − 1 0 0−110 , maka tentukan luas bangun bayangannya. Penyelesaian Dengan menunggangi pendekatan koordinat, luas ingat segitiga sama kaki OAB adalah Dengan demikian, luas bayangan dari OAB yaitu L Δ O A ′ B ′ = ∣ ∣ ∣ 0 1 − 1 0 ∣ ∣ ∣ × 6 = 6 satuan luas LΔOA′B′=0−110 ×6=6 satuan luas . Diketahui persegi ABCD dengan koordinat titik sudutnya adalah A–2, 0, B0, –2, C2, 0, dan D0, 2. Bintik A’, B’, C’, dan D’ yaitu titik hasil transmutasi persegi ABCD dengan matriks − 3 − 2 2 1 −32−21 . Hitunglah luas cerminan persegi tersebut. Penyelesaian Perhatikan susuk persegi ABCD berikut Dari gambar di atas, tampak bahwa jenjang AO = BO = 2 rincih tinggi. Dengan demikian, persegi ABCD mempunyai format tataran sisi = 2 2 – √ 22 rincih panjang dan luasnya adalah 2 2 – √ × 2 2 – √ = 8 22×22=8 satuan luas. Jadi, luas bayangan dari persegi ABCD merupakan 8 eceran luas. Diketahui segitiga PQR dengan koordinat bintik kacamata P-3, 4, Q1,1, dan R3, 4. Kalau segitiga sama kaki P’Q’R’ merupakan bayangan segitiga PQR oleh metamorfosis nan bersesuaian dengan matriks 1 2 0 3 1023 , maka tentukan luas P’Q’R’. Penyelesaian Dengan memperalat pendekatan koordinat, maka luas segitiga PQR merupakan L Δ P Q R LΔPQR = 1 2 × ∣ ∣ ∣ − 3 4 1 1 3 4 − 3 4 ∣ ∣ ∣ =12×−313−34144 = 1 2 × − 3 + 4 + 12 − 4 − 3 + 12 =12×−3+4+12−4−3+12 = 1 2 × 18 =12×18 = 9 satuan luas =9satuanluas Dengan demikian, luas bangun segitiga sama PQ’R’ oleh alterasi 1 2 0 3 1023 adalah L Δ P ′ Q ′ R ′ = = = ∣ ∣ ∣ 1 2 0 3 ∣ ∣ ∣ × 9 3 × 9 27 satuan luas LΔP′Q′R′=1023 ×9=3×9=27satuanluas Mari uji kognisi kalian dengan mengerjakan sepuluh les tanya nan cak semau dalam topik ini. cara mencari luas paparan persegi tahapan, mencari luas segitiga dengan matriks, paradigma soal dan pembahasan alterasi matriks, komposisi transformasi ilmu ukur, soal metamorfosis ilmu ukur papan bawah 12,
Jadibayangan segitiga ABC adalah segitiga A'B'C' dengan titik A'(3,5), B'(5,7) dan C' Atau kita dapat menentukan lingkaran hasil dilatasi ini dengan menggunakan matriks seperti berikut. Dengan dilatasi Luas bangun bayangan berubah untuk transformasi dilatasi, yaitu jika luas bangun mula-mula L setelah didilatasi oleh [P(a ,b),k
PertanyaanSegitiga ABC dengan titik A − 2 , 3 , B 2 , 3 , dan C 0 , − 4 didilatasi dengan pusat O 0 , 0 dan faktor skala 4 . Luas segitiga setelah didilatasi adalah ....Segitiga dengan titik , , dan didilatasi dengan pusat dan faktor skala . Luas segitiga setelah didilatasi adalah ....Jawabanjawaban yang tepat adalah yang tepat adalah Dilatasi dengan pusat 0 , 0 dan faktor skala k x ′ y ′ ​ = k ​ 0 ​ 0 ​ k ​ ​ x y ​ = k x k y ​ Bentuk Khusus Luas segitiga A BC jika diketahui titik A x 1 ​ , y 1 ​ , B x 2 ​ , y 2 ​ , dan C x 3 ​ , y 3 ​ adalah L = ∣ ∣ ​ 2 d e t T ​ ∣ ∣ ​ T = ⎝ ⎛ ​ 1 1 1 ​ x 1 ​ x 2 ​ x 3 ​ ​ y 1 ​ y 2 ​ y 3 ​ ​ ⎠⎞ ​ Diketahui dengan titik A − 2 , 3 , B 2 , 3 , dan C 0 , − 4 didilatasi dengan pusat O 0 , 0 dan faktor skala 4 . Ditanya Luas segitiga setelah didilatasi = ? Jawab Kita cari A ′ , B ′ , dan C ′ terlebih dahulu x ′ y ′ ​ = 4 x 4 y ​ A ′ = k x k y ​ = 4 ⋅ − 2 4 ⋅ 3 ​ = − 8 12 ​ B ′ = k x k y ​ = 4 ⋅ 2 4 ⋅ 3 ​ = 8 12 ​ C ′ = k x k y ​ = 4 ⋅ 0 4 ⋅ − 4 ​ = 0 − 16 ​ Dengan menggunakan bentuk khusus kita cari Luas segitiga setelah didilatasi T ​ = ​ ⎝ ⎛ ​ 1 1 1 ​ − 8 8 0 ​ 12 12 − 16 ​ ⎠⎞ ​ ​ Cari determinan dari matriks T . det T ​ = = = = ​ ∣ ∣ ​ 1 1 1 ​ − 8 8 0 ​ 12 12 − 16 ​ ∣ ∣ ​ 1 1 1 ​ − 8 8 0 ​ 1 ⋅ 8 ⋅ − 16 + − 8 ⋅ 12 ⋅ 1 + 12 ⋅ 1 ⋅ 0 − 1 ⋅ 8 ⋅ 12 − 0 ⋅ 12 ⋅ 1 − − 16 ⋅ 1 ⋅ − 8 − 128 − 96 + 0 − 96 − 0 − 128 − 448 ​ Maka luas segitiganya L ​ = = = = ​ ∣ ∣ ​ 2 d e t T ​ ∣ ∣ ​ ∣ ∣ ​ 2 − 448 ​ ∣ ∣ ​ ∣ − 224 ∣ 224 ​ Jadi, luasSegitiga ABC setelah didilatasi adalah 224 . Jadi, jawaban yang tepat adalah Dilatasi dengan pusat dan faktor skala k Bentuk Khusus Luas segitiga jika diketahui titik adalah Diketahui dengan titik , , dan didilatasi dengan pusat dan faktor skala . Ditanya Luas segitiga setelah didilatasi = ? Jawab Kita cari terlebih dahulu Dengan menggunakan bentuk khusus kita cari Luas segitiga setelah didilatasi Cari determinan dari matriks . Maka luas segitiganya Jadi, luas Segitiga setelah didilatasi adalah . Jadi, jawaban yang tepat adalah B. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!14rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!MRMuhammad RizkyMakasih ❤️ESEllys Sulistyani Pembahasan lengkap banget Ini yang aku cari! Mudah dimengerti Makasih ❤️GaGhani adeis safaraz Makasih ❤️
MembuatSegitiga dan Mengukur Besar Sudut dalam Segitiga . 1) Tentukan bayangan segitiga ABC dengan Mahasiswa mampu memprediksi bentuk dan koordonat bangun hasil dilatasi .
Blog Koma - Hallow teman-teman, bagaimana kabarnya? Mudah-mudahan baik-baik saja. Pada artikel ini kita akan kembali membahas artikel yang terkait dengan "Transformasi geometri" yaitu dengan jugul Transformasi Geometri Luas Bangun datar. Materi terkait Transformasi Geometri Luas Bangun datar ini perlu kita bahas karena baik di ujian tingkat sekolah seperti ulangan harian, ulangan semesteran atau ujian nasional, serta tingkat seleksi masuk perguruan tinggi juga sering dikeluarkan soal-soalnya. Untuk mempermudah dalam mempelajari materi Transformasi Geometri Luas Bangun datar ini, silahkan teman-teman kuasai terlebih dahulu transformasi secara umum dan jenis-jenis transformasi seperti translasi, dilatasi, rotasi, dan refleksi, serta komposisi transformasi. Selain itu juga teman-teman harus menguasai operasi pada matriks terutama perkalian. Transformasi geometri pada titik dan pada "persamaan kurva", kita harus mengerjakan semua jenis transformasi yang disediakan pada soal. Nah, apakah pada Transformasi Geometri Luas Bangun datar perlu kita lakukan hal yang sama yaitu mengerjakan semua jenis transformasi yang disediakan oleh soal? jawabannya tidak, karena berdasarkan sifat-sifat masing-masing jenis transformasi hanya dilatasi yang menyebabkan perubahan luas suatu bangaun datar. Artinya kita tidak perlu menghitung semua, cukup kerjakan yang dilatasi saja. Sebagai ilustrasi perhatikan gambar Transformasi Geometri Luas Bangun datar segitiga ABC berikut. Perlu diperhatikan, jika titik pada bangun datar saja yang ditransformasi, maka Transformasi Geometri Luas Bangun datar harus melibatkan semua jenis transformasi yang ada pada soal karena bukan luas bayangan yang kita cari akan tetapi bayangan dari titik-titik sudutnya sehingga ini termasuk transformasi titik bukan luas. Transformasi Geometri Luas Bangun datar Langkah-langkah dalam mengerjakan Transformasi Geometri Luas Bangun datar yaitu 1. Jika yang ditanyakan luas bayangannya, maka cukup kerjakan yang ada dilatasinya saja. Jika pada soal tidak ada dilatasinya, maka luas bayangannya sama dengan luas awalnya. 2. Jika pada soal langsung diketahui matriks transformasinya bukan translasi atau rotasi atau refleksi, maka wajib kita hitung luas bayangannya menggunakan matriks tersebut digabungkan dengan dilatasi jika ada. 3. Jika yang ditanyakan bayangan dari titik-titik sudutnya, maka semua jenis transformasi yang ada pada soal kita kerjakan. $\spadesuit $ Cara menghitung luas bayangan Luas bayangan = $MT \times $ Luas awal. dimana $ MT = \, $ determinan matriksnya. Cara Menghitung Luas Segitiga $\spadesuit $ Luas Segitiga ABC Misalkan segitiga ABC dengan koordinatnya $Aa_1,a_2 , Bb_1,b_2 $ dan $ Cc_1,c_2$, Luasnya Luas $ = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right $ Luas $ = \frac{1}{2} [a_1b_2+b_1c_2+c_1a_2-b_1a_2+c_1b_2+a_1c_2] $ Catatan Bentuk penghitungan luas seperti di atas mirip determinan pada matriks dengan mengulang titik yang paling kiri diletakkan kembali di paling kanan. Untuk lebih mendalam tentang cara menghitung luas bangun datar yang diketahui koordinatnya, silahkan baca artikel "Luas Bangun Datar Diketahui Koordinatnya". Contoh Soal Transformasi Geometri Luas Bangun datar 1. Segitiga ABC dengan koordinat titik-titik sudutnya yaitu $A-1,2 , B2,3 $ dan $ C1,5 $ ditransformasi oleh matriks $ \left \begin{matrix} 3 & -1 \\ 2 & 4 \end{matrix} \right $. Tentukan a. bayangan titik-titik sudut segitiga ABC, b. luas bayangan segitiga ABC. Penyelesaian a. Menentukan bayangan titik-titik sudutnya $ \begin{align} \left \begin{matrix} A^\prime & B^\prime & C^\prime \end{matrix} \right & = MT. \left \begin{matrix} A & B & C \end{matrix} \right \\ & = \left \begin{matrix} 3 & -1 \\ 2 & 4 \end{matrix} \right. \left \begin{matrix} -1 & 2 & 1 \\ 2 & 3 & 5 \end{matrix} \right \\ & = \left \begin{matrix} -5 & 3 & -2 \\ 6 & 16 & 22 \end{matrix} \right \end{align} $ Jadi bayangan titik sudutnya adalah $ A^\prime -5,6, \, B^\prime 3,16, $ dan $ -2, 22 $. b. Menentukan luas bayangan segitga ABC dengan bayangan titik-titik sudutnya sudah kita peroleh di bagian a di atas. Luas bayangannya $\begin{align} \text{Luas bayangan } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} -5 & 3 & -2 & -5 \\ 6 & 16 & 22 & 6 \end{matrix} \right \\ & = \frac{1}{2} [ \\ & = \frac{1}{2} [-80+66-12-18-32-110] \\ & = \frac{1}{2} [-26-124] \\ & = \frac{1}{2} [98] = 49 \end{align} $ Jadi, luas bayangannya adalah 49 satuan luas$. \, \heartsuit $ Cara 2 bagian b, *. Luas awal segitiga ABC $\begin{align} \text{Luas awal } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} -1 & 2 & 1 & -1 \\ 2 & 3 & 5 & 2 \end{matrix} \right \\ & = \frac{1}{2} [-3 + 10 +2-4 + 3 -5] \\ & = \frac{1}{2} [7] = \frac{7}{2} \end{align} $ *. Luas bayangannya $\begin{align} \text{Luas bayangan } & = MT \times \text{Luas awal} \\ & = \left \begin{matrix} 3 & -1 \\ 2 & 4 \end{matrix} \right \times \frac{7}{2} \\ & = \times \frac{7}{2} \\ & = 14 \times \frac{7}{2} = 49 \end{align} $ 2. Segitiga ABC dengan koordinat $A1,2, B3,-1, $ dan $ C4,1 $ ditranslasi $ \left \begin{matrix} 5 \\ -1 \end{matrix} \right $, kemudian dilanjutkan lagi dengan pencerminan terhadap sumbu X, setelah itu didilatasi dengan faktor skala 2 dan titik pusat $-1,3$, setelah itu dilanjutkan lagi dengan rotasi sejauh $ 90^\circ $ belawanan jarum jam dengan titik pusat $2,1 $. Tentukan luas bayangan segitiga ABC! Penyelesaian Cara I Menentukan bayangan titik segitiganya *. Pertama Translasi , $ \left \begin{matrix} A^\prime \end{matrix} \right = \left \begin{matrix} 1 \\ 2 \end{matrix} \right + \left \begin{matrix} 5 \\ -1 \end{matrix} \right = \left \begin{matrix} 6 \\ 1 \end{matrix} \right $ $ \left \begin{matrix} B^\prime \end{matrix} \right = \left \begin{matrix} 3 \\ -1 \end{matrix} \right + \left \begin{matrix} 5 \\ -1 \end{matrix} \right = \left \begin{matrix} 8 \\ -2 \end{matrix} \right $ $ \left \begin{matrix} C^\prime \end{matrix} \right = \left \begin{matrix} 4 \\ 1 \end{matrix} \right + \left \begin{matrix} 5 \\ -1 \end{matrix} \right = \left \begin{matrix} 9 \\ 0 \end{matrix} \right $ *. Kedua Pencerminan sumbu X, MT $ = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right $ $ \left \begin{matrix} A^{\prime \prime } \end{matrix} \right = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right. \left \begin{matrix} 6 \\ 1 \end{matrix} \right = \left \begin{matrix} 6 \\ -1 \end{matrix} \right $ $ \left \begin{matrix} B^{\prime \prime } \end{matrix} \right = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right. \left \begin{matrix} 8 \\ -2 \end{matrix} \right = \left \begin{matrix} 8 \\ 2 \end{matrix} \right $ $ \left \begin{matrix} C^{\prime \prime } \end{matrix} \right = \left \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right. \left \begin{matrix} 9 \\ 0 \end{matrix} \right = \left \begin{matrix} 9 \\ 0 \end{matrix} \right $ *. Ketiga dilatasi, MT $ = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right $ dengan $a,b=-1,3$ $ \begin{align} \left \begin{matrix} A^{\prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 6 - -1 \\ -1 - 3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 7 \\ -4 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 14 \\ -8 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right = \left \begin{matrix} 13 \\ -5 \end{matrix} \right \\ \left \begin{matrix} B^{\prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 8 - -1 \\ 2 - 3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 9 \\ -1 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 18 \\ -2 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right = \left \begin{matrix} 17 \\ 1 \end{matrix} \right \\ \left \begin{matrix} C^{\prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 9 - -1 \\ 0 - 3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right. \left \begin{matrix} 10 \\ -3 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right \\ & = \left \begin{matrix} 20 \\ -6 \end{matrix} \right + \left \begin{matrix} -1 \\ 3 \end{matrix} \right = \left \begin{matrix} 19 \\ -3 \end{matrix} \right \end{align} $ *. Keempat rotasi, MT $ = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right $ dengan $a,b=2,1$ $ \begin{align} \left \begin{matrix} A^{\prime \prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 13 - 2 \\ -5 - 1 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 11 \\ -6 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 6 \\ 11 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right = \left \begin{matrix} 8 \\ 12 \end{matrix} \right \\ \left \begin{matrix} B^{\prime \prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 17 - 2 \\ 1 - 1 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 15 \\ 0 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 \\ 15 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right = \left \begin{matrix} 2 \\ 16 \end{matrix} \right \\ \left \begin{matrix} C^{\prime \prime \prime \prime} \end{matrix} \right & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 19 - 2 \\ -3 - 1 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right. \left \begin{matrix} 17 \\ -4 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right \\ & = \left \begin{matrix} 4 \\ 17 \end{matrix} \right + \left \begin{matrix} 2 \\ 1 \end{matrix} \right = \left \begin{matrix} 6 \\ 18 \end{matrix} \right \end{align} $ *. Koordinat bayangan titik-titik sudut segitiga adalah $A^{\prime \prime \prime \prime}8,12, B^{\prime \prime \prime \prime}2,16 $ dan $ C^{\prime \prime \prime \prime}6, 18 $. *. Menentukan luas bayangannya $\begin{align} \text{Luas bayangan } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} 8 & 2 & 6 & 8 \\ 12 & 16 & 18 & 12 \end{matrix} \right \\ & = \frac{1}{2} [128 + 36 + 72-24 + 96 + 144] \\ & = \frac{1}{2} [-28] = -14 = 14 \end{align} $ Luasan selalu bernilai positif. Jadi, luas bayangannya adalah 14 satuan luas$. \, \heartsuit $ Cara 2 Hanya memperhatikan bentuk dilatasi saja. *. Pada dilatasi, berapapun titik pusatnya tidak berpengaruh pada luas, artinya luas hanya ditentukan oleh faktor skala saja. *. Luas awal segitiga ABC $\begin{align} \text{Luas awal } & = \frac{1}{2} \left \begin{matrix} a_1 & b_1 & c_1 & a_1 \\ a_2 & b_2 & c_2 & a_2 \end{matrix} \right \\ & = \frac{1}{2} \left \begin{matrix} 1 & 3 & 4 & 1 \\ 2 & -1 & 1 & 2 \end{matrix} \right \\ & = \frac{1}{2} [-1 + 3 + 8-6 - 4 + 1] \\ & = \frac{1}{2} [7] = \frac{7}{2} \end{align} $ *. Luas bayangannya dilatasi dengan $ k = 2 $ $\begin{align} \text{Luas bayangan } & = MT \times \text{Luas awal} \\ & = \left \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right \times \frac{7}{2} \\ & = \times \frac{7}{2} \\ & = 4 \times \frac{7}{2} = 14 \end{align} $ Jadi, luas bayangannya adalah 14 satuan luas, sama dengan cara I. 3. Lingkaran dengan persamaan $x-1^2 + y + 3^2 = 5 $ dirotasi sejauh $ 135^\circ $ searah jarum jam, kemudian dilanjutkan dengan pencerminan terhadap garis $ y = x + 6 $, setelah itu dilanjutkan dengan translasi sejauh $ \left \begin{matrix} 12 \\ -10 \end{matrix} \right $ . Tentukan luas bayangan lingkaran tersebut! Penyelesaian *. Luas akan berubah jika dilakukan dilatasi pada lingkaran tersebut. *. Karena tidak ada dilatasi, maka luas bayangan tetap yaitu sama dengan luas awal. *. Lingkaran $ x-1^2 + y + 3^2 = 5 $ memiliki $ r = \sqrt{5} $. *. Luas bayangannya $\begin{align} \text{Luas bayangan } & = \text{Luas awal} \\ & = \pi r^2 \\ & = \pi \sqrt{5}^2 = 5\pi \end{align} $ Jadi, luas bayangannya adalah $ 5\pi $ satuan luas $. \, \heartsuit $ 4. Sebuah segiempat ABCD memiliki koordinat A1,2, B2,5, C3, 7 dan D5,4 dilakukan transformasi yaitu pertama didilatasi dengan faktor skala 3 dan titik pusat $-1,2$, dilanjutkan dengan rotasi sejauh $ 180^\circ $ dengan pusat $0,0$, dilanjutkan kembali translasi sejauh $ \left \begin{matrix} -3 \\ 1 \end{matrix} \right $. Tentukan perbandingan luas bayangan dan luas awalnya! Penyelesaian *. Pada soal ini, yang berpengaruh hanya dilatasi dengan $ k = 3 $, sehingga $\begin{align} \text{Luas bayangan } & = MT \times \text{Luas awal} \\ \frac{\text{Luas bayangan } }{\text{Luas awal } } & = MT \\ & = \left \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix} \right \\ & = - \\ & = 9 = \frac{9}{1} \end{align} $ Jadi, perbandingan luas bayangan dan luas awalnya adalah $ 9 1 . \, \heartsuit $. Demikian pembahasan materi Transformasi Geometri Luas Bangun datar dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan transformasi geometri. V menerapkannya untuk menentukan titik stasioner (titik maximum, titik minimumdan titik belok). 11 Menganalisis bentuk model XI/2 Aplikasi turunan fungsi v Diberikan kotak tanpa tutup dengan alas berbentuk 21 matematika berupa persamaan persegi, Siswa dapat menentukan luas maksimum fungsi, serta menerapkan konsep permukaan kotak jika Disajikan Hai Quipperian, bagaimana kabarnya? Semoga selalu sehat, ya. Pernahkah kamu memanfaatkan tools zoom/perbesaran saat sedang memfoto suatu objek? Jika kamu memperbesar suatu objek melalui kamera, pasti akan muncul keterangan 1,5x; 2x; 3,5x; 3,9x; dan seterusnya kan? Di dalam Matematika, keterangan 2x atau 4x itu merupakan faktor pengali sementara proses perbesaran yang kamu lakukan disebut dilatasi. Lalu, apa yang dimaksud dilatasi itu? Daripada penasaran, yuk simak selengkapnya! Pengertian Dilatasi Dilatasi adalah perubahan titik suatu objek pada bidang geometri berdasarkan nilai faktor pengalinya. Pada transformasi jenis ini, ukuran bayangan bisa berbeda dengan ukuran bendanya. Namun, bisa juga ukuran bayangannya tetap. Namun, bentuknya tetap sama, ya. Mengapa demikian? Hal itu karena adanya faktor pengali. Misalnya suatu objek diperbesar dengan faktor pengali = 2, maka bayangan objek tersebut memiliki ukuran dua kali ukuran objek mula-mula dan jarak bayangan terhadap titik pusatnya juga dua kali lebih jauh dari jarak objek dan titik pusat mula-mula. Faktor Pengali Pada Dilatasi Faktor pengali merupakan faktor penentu letak dan ukuran suatu objek hasil dilatasi. Lalu, seperti apa hubungan antara dilatasi dan faktor pengali? Faktor pengali lebih besar dari satu k > 1 akan mengakibatkan pembesaran ukuran objek dan searah dengan sudut dilatasi objek awalnya. Faktor pengali sama dengan satu k = 1 tidak mengakibatkan perubahan ukuran atau posisi objek. Faktor pengali antara 0 dan 1 0 < k < 1 mengakibatkan pengecilan ukuran objek dan searah dengan sudut dilatasi awalnya. Faktor pengali antara -1 dan 0 -1 < k < 0 mengakibatkan pengecilan ukuran objek dan memiliki arah yang berlawanan dengan sudut dilatasi awalnya. Faktor pengali sama dengan -1 k = -1 tidak mengakibatkan perubahan ukuran objek, namun arahnya berlawanan dengan sudut dilatasi awalnya. Faktor pengali lebih kecil dari -1 k < – 1 mengakibatkan pembesaran ukuran objek dan memiliki arah berlawanan dengan sudut dilatasi awalnya. Jenis-Jenis Dilatasi Berdasarkan titik pusatnya, dilatasi dibagi menjadi dua, yaitu dilatasi terhadap titik pusat 0, 0 dan dilatasi terhadap titik pusat a, b. Apa perbedaan antara keduanya? Dilatasi Terhadap Titik Pusat 0, 0 Bentuk umum dilatasi titik A terhadap titik pusat 0, 0 bisa dinyatakan sebagai berikut. Bentuk penulisan di atas menunjukkan bahwa titik A yang berkoordinat x, y mengalami dilatasi terhadap titik pusat 0, 0 dengan faktor pengali k, sehingga menghasilkan titik A’ yang berkoordinat x’, y’. Nah, koordinat x’, y’, kamu bisa tentukan menggunakan persamaan matriks seperti di bawah ini. Agar semakin paham, simak contoh soalnya ya. Suatu objek berbentuk persegipanjang PQRS berada di bidang koordinat Cartesius seperti berikut. Jika objek tersebut didilatasikan terhadap titik pusat dengan k = 2, tentukan bentuk bayangan yang terjadi! Pembahasan Mula-mula, tentukan dahulu koordinat titik P, titik Q, titik R, dan titik S seperti pada tabel. TitikKoordinatP1, 3Q4, 3R1, 2S4, 2 Selanjutnya, tentukan koordinat titik P’, titik Q’, titik R’, dan titik S’ dengan persamaan dilatasi terhadap titik pusat. Titik P’ Dengan demikian P’ = 2, 6 Titik Q’ Dengan demikian Q’ = 8, 6 Titik R’ Dengan demikian R’ = 2, 4 Titik S’ Dengan demikian S’ = 8, 4 Diperoleh Titik awalKoordinatTitik akhirKoordinatP1, 3P’2, 6Q4, 3Q’8, 6R1, 2R’2, 4S4, 2S’8, 4 Jika digambarkan dalam koordinat Cartesius menjadi Terlihat kan jika gambar objeknya mengalami pembesaran dengan arah yang sama dengan sudut dilatasi awalnya? Sampai sini, apakah Quipperian sudah paham? Jika sudah, yuk lanjut ke pembahasan selanjutnya. Dilatasi Terhadap Titik Pusat a, b Jika titik A mengalami dilatasi terhadap titik pusat a, b dengan faktor pengali k, maka secara matematis bisa dinyatakan sebagai Lalu, bagaimana cara menentukan koordinat akhir dilatasinya? Koordinat akhir bisa dicari dengan persamaan matriks berikut. Agar kamu semakin paham, yuk simak contoh soalnya. Suatu segitiga ABC memiliki titik koordinat sebagai berikut. Titik A = 4, 6 Titik B = 2, 2 Titik C = 6, 2 Jika segitiga tersebut didilatasi terhadap titik pusat 2, -2 dengan faktor pengali = -1/2, tentukan gambar objek beserta hasil dilatasinya! Pembahasan Sebelum mengeplot titik A, B, dan C pada koordinat Cartesius, sebaiknya tentukan dulu koordinat hasil dilatasinya, ya. Koordinat titik A’ Diketahui titik A 4, 6, k = -1/2 Dengan demikian, A’ = 1, -6. Koordinat titik B’ Diketahui titik B 2, 2, k = -1/2 Dengan demikian, B’ = 2, -4. Koordinat titik C’ Diketahui titik C 6, 2, k = -1/2 Dengan demikian, C’ = 0, -4. Jika titik-titik tersebut disubstitusikan ke dalam koordinat Cartesius, akan diperoleh gambar seperti berikut. Oleh karena faktor dilatasinya k = -1/2, maka bayangan objeknya diperkecil dengan arah sudut dilatasi berlawanan terhadap sudut dilatasi semula. Contoh Soal Untuk mengasah pemahamanmu, yuk simak contoh soal seperti di bawah ini. Contoh Soal 1 Suatu titik Q 6,3 mengalami dilatasi terhadap pusat 3, -5. Jika faktor pengalinya -1, tentukan koordinat akhir titik Q. Pembahasan Untuk mencari koordinat akhir titik Q, gunakan persamaan berikut ini. Jadi, koordinat akhir titik Q atau titik Q’ -2, -6. Contoh Soal 2 Suatu bangun persegi PQRS memiliki koordinat masing-masing seperti berikut. Titik P2,-2 Titik Q4,-2 Titik R2, -4 Titik S4,-4 Bangun tersebut ditranslasikan terhadap titik pusat 0,0 dengan faktor pengali 3/2. Gambarkan dilatasi bangun persegi PQRS tersebut! Pembahasan Pertama, kamu harus menentukan koordinat akhir masing-masing titik. Titik P’ Dengan demikian, koordinat titik P’ = 3,-3. Titik Q’ Dengan demikian, koordinat titik Q’ = 6,-3. Titik R’ Dengan demikian, koordinat titik R’ = 3,-6. Titik S’ Dengan demikian, koordinat titik R’ = 6, -6. Jika kedua bangun digambarkan dalam koordinat Cartesius, diperoleh gambar seperti berikut. Contoh Soal 3 Titik A yang berkoordinat 3, 9 mengalami dilatasi terhadap titik pusat a, b dengan faktor pengali 2, sehingga diperoleh koordinat akhir A’ 5, 16. Tentukan koordinat titik pusat dilatasinya! Pembahasan Diketahui x = 3 y = 9 k = 2 x’ = 5 y’ = 16 Ditanya a, b =…? Jawab Untuk menentukan titik pusat dilatasinya, gunakan persamaan dilatasi terhadap titik pusat a, b seperti berikut. Dari persamaan di atas, diperoleh 5 = 6 – 2a + a ⇔ a = 1 16 = 18 – 2b + b ⇔ b = 2 Dengan demikian, diperoleh a = 1 dan b = 2. Jadi, koordinat titik pusat a, b adalah 1, 2. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! . 360 48 10 342 222 250 421 307

cara menghitung luas bayangan segitiga hasil dilatasi